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ABSTRACT

Investigations of scattered transient waveforms from conducting bodies have

shown that it is possible to classify electromagnetic scatterers. 'The concept is based

upon the natural resonance modes which are part of the scatterer response to an

incident excitation. A new approach for describing natural resonance modes using

recursive systems is introduced. A discrete auto-regressive moving-average (ARMA)

type model for the case of the space-time wave equation is presented. This model

results from a finite-difference approximation to the wave-equation. The ARMA

model has spatially-independent coefficients for the temporal recursive terms.

Computed results showing aspect- and spatial-independence of natural resonance

modes, with verification of the ARMA model, are also included. Applications to

target identification, using the natural resonant frequencies of the target's echo

signature, are considered.
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I. INTRODUCTION

A. BACKGROUND

Investigations of transient scattered waveforms from conducting bodies have

shown that it is possible to classif, electromagnetic scatterers. Such research is

particularly applicable to inverse scattering and radar target identification.

Conceptual applications in radar target identification have been demonstrated in

some laboratories using advanced, high resolution radar techniques. One type of

technique is based upon the natural resonance modes which are part of the scattering

response-to an incident transient excitation. In 1971, Baum [Ref. 1], introduced the

development of the singularity expansion method (SEM), which presents the response

of a system as a weighted expansion of complex natural modes. Theoretical studies

and experiments have shown that these modes are functions of the scatterer geometry

and composition but are independent of the incident excitation, including aspect and

polarization.

The fact that these natural modes are only functions of the target led to the

idea to use them as a data base for the target identification process. This concept

was introduced by Moffatt and Mains in 1974 [Ref. 2]. The identification process,

in its most elementary form, includes a comparison against the modes that have been

extracted and identified, using advanced signal processing techniques, as applied to

the target's time-domain scattering response. Morgan showed that a complete
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description of the scattered signal, using the conventional SEM approach, is valid only

for the "late-time" portion of the scattered field [Ref 3]. This late-time scattering

response is due to the source-free currents that remain after the incident field has

completed its illumination of the target.

The unique properties of the late-time response are crucial to the development

of algorithms to identify the resonance modes of the target. These natural resonance

modes can be represented by pairs of conjugate poles in the left-half complex s-plane

of the Laplace transform domain. Targets of different geometry, or composition,

have different pole representations. Several techniques have been developed to

extract the dominant poles in the time domain scattering responses of simple targets.

Morgan [Ref 4], for example, introduced the classification of some kinds of

electromagnetic scatterers by the annihilation of the natural modes. The advantages

of this technique over others were achieved, primarily, by using only the late-time

scattered field. The theory of natural resonance scattering is the basis for this thesis,

and it is therefore explained in more detail in Chapter II.

B. PRESENTATION IN A DISCRETE MODEL

Based on the theory of the natural resonance scattering one can recognize the

late-time portion of the scattered signal as the response of a linear time-invariant

(LTI) system. These kinds of systems can be numerically modeled and described by

means of linear constant-coefficient difference equations [Ref. 5]. A discrete model,

which describes the source-free current distribution, may explicitly present the late-
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time response of the scatterer to an incident field as a function of its natural modes.

Moreover, the currents may be described by an auto-regressive moving-average

(ARMA) type model, having constant coefficients for the recursive terms whih

generate the natural resonance modes. This type of model represents an important

class of discrete systems which are known as recursive systems since the output

depends on previous values of the output. Such a discretc; model can be employed

in tie process of identifying the resonance modes for electromagnetic and acoustic

scatterers of variou3 shapes. The time-independent coefficients of the recursive terms

in the ARMA model are also the denominator polynomial coefficients of the system

transfer function. Using the well-known concept of zeros and poles which represent

the system frequency response, the roots of this polynomial are the poles which

represent the complex natural frequencies of the resonance modes [Ref. 6]. In

addition, such a discrete model gives a complete description of the natural resonance

modes for a given scattering object when limited by the sampling frequency imposed

by the Nyquist theorem. This is the basic idea of this thesis, in which such a model

is set up for the case of the numerical finite-difference solution of the space-time

wave equation. It is believed that this is the first time that such an approach has

been presented.

C. THESIS GOAL

The goal of this thesis was to investigate the possibilities of describing the

natural resonance modes of electromagnetic and acoustic scatterers by discrete

3



ARMA models. These ARMA models should have constant coefficients for the

recursive terms which determine the natural resonance modes. A model for a one-

dimensional structure, such as the damped string with forcing function, illustrates the

validity of the proposed approach. In addition, three-dimensional scattering

structures can be analyzed using a space-time finite-difference method, which is an

extension to the considered herein.

In this thesis an attempt have been made to present an overview of some

approaches for solving the problem of the natural modes, and constructing the

required model. A brief presentation of the theory of natural resonance modes, as

developed through the time-domain integral equation, is included in Chapter II.

Chapter III describes the simplified numerical solution, via the vector potential, as

chosen to demonstrate the possibility of using an ARMA model for the case of an

electromagnetic thin-wire. This technique is applied to the analogous problem of a

finite string. Chapter IV presents the ARMA model with several analytical and

computed results. Conclusions and a description of some future questions are

discussed in Chapter V.
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II. THE THEORY OF NATURAL RESONANCE SCAT[ERING

A. INTRODUCTION

The general topic to be considered in this chapter is the natural resonance

mode representation for the induced current and the scattered field transient

response of a perfectiy conducting body. The case of a thin-wire is presented in some

detail. The goal of this chapter is to provide the theoretical background required for

constructing a discrete ARMA model for the natural resonances in electromagnetic

scattering. In addition, the features of such a model should agree with this theory.

A description of time-domain solutions relevant to this work are included in this

chapter. There are two main steps in the process of setting up the ARMA model.

First, the time-domain numerical solution is required, and second, based on the

numerical solution, the discrete model must be constructed.

There are two independent techniques available for solving the problem of

transient scattering. The first involves the computation of the frequency-domain

response of the structure, followed by inverse Fourier transformation to yield the

time-domain response. An alternative approach involves the direct formulation of

either partial differential or integral equations in the time domain. One way of

describing the scattered signal in terms of natural modes is by using the formalism

known as the Singularity Expansion Method (SEM) [Ref. 1]. Mittra and Van

Blaricum showed that the SEM pole singularities of a structure can be estimated
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directly from its time-domain response [Ref. 7]. In this chapter time-domain integral

equations are used general to represent solttion of the transient electromagnetic

problem. Also considered will be the conceptual basis of mode representations for

fields and currents in transient scattering.

B. TIME DOMAIN INTEGRAL EQUATIONS

Consider the general three-dimensional transient electromagnetic scattering

problem as depicted by Fig. 1.

inC (jn)

f)
S

I-_k INDUCED

~CURRENT

i11c (F,tL)

INCIDENT FIELD PERFECTLY CONDUCTING
OBJECT

Figure 1. Transient Electromagnetic Scattering [After Ref. 4]

The perfectly conducting object is illuminated by an incident impulsive type plane

wav in free space. The incident electric and magnetic fields are EC and H1Inc,
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respectively. The integral equation approach represents the induced current on the

surface of the object in terms of the incident fieid. There are two fundamental types

of time-domain integral equations: the Electric Field Integral Equation (EFIE), and

the Magnetic Field Integral Equation (MFIE). Derivations of both EFIE and MFIE

are described by Mittra in detail [Ref. 8].

Integral equation derivations begin with the time-dependent forms of Maxwell's

equations in free space. The continuity equation is used to relate the current density,

JS, and the charge density or. The scalar potential, 4,, and the vector potential, A, are

defined in terms of the electric and magnetic fields, respectively. The potentials are

related to each other via the Lorentz condition[Ref. 8]. The wave equation can be

derived independently for the scaJ r potential and for the vector potential using

Maxwell's equations. The sources of the nonhomogeneous wave equations for the

vector and the scalar potentials are the current density, J,, and the charge density, a,

respectively. The solution is constructed using the Green's function, which is the

impulse response in time and space. The integral representation of the time-

dependent electric and magnetic fields are obtained by applying the solutions of the

potentials for the general current and charge distribution.

The expressions of the EFIE and MFIE, for thb scattering problem are finally

derived by applying the appropriate boundary conditions of the tangential electric and

magnetic fields on the surface of the perfect conductor. In the case of the EFIE the

sum of the tangential scattered electric field and the incident electric field is zero.

The boundary condition in the case of the MFIE is that the total tangential magnetic

7



field is equal to the surface current density. The following equations are obtained for

the EFIE (1) and MFIE (2), [Ref. 8]

2n s R a'c eo  R 3

1 a , R ds
CO ar cR2]

J 3(rt=2,×ixH' + iLi xf xJ (r +A (2)
2n f[ a- R R2 '

where S is the surface of the conductor, the unit vector which is outward normal to

S is ft , the current density is Js, the charge density is a, the permeability and

permittivity of free space are g. and e., respectively. Further, the position vector

is r, r' IeS indicates points on the PEC surface, c= 1/(eo~to)'2 is the velocity of light,

'-=t-R/c is the retarded time, and R=iRI=Ir-rI.

Both the EFIE and MFIE are Principal Value (P.V.) integrals because of kernel

singularities for r-r,. The special forms of the time-domain integral equations (1)

and (2) play fundamental roles in their solution construction. The main difference

between these equations and their respective frequency domain equations is in the

solution construction. The equations in frequency domain are handled numerically

8



by matrix inversion, while initial-value techniques are applied to time domain integral

equations.

The solution of the general integral equation for the scattering problem uses a

time-stepping technique. Special cases such as one- and two-dimensional scatterers,

i.e, cylindrical and wire-type scatterers, have special forms of integral equations,

hence construction of their solutions differ, considering numerical aspects and

accuracy. For three-dimensional scatterers the MFIE is most convenient, while the

EFIE is used in the case of thin wires and thin surfaces. This is due to the fact that

for solid surface structures the kernel in the MFIE is less singular than the kernel in

the EFIE. As a consequence, less sophisticated expansion functions may be

employed for representing the unknown current. On the other nand, the MFIE

becomes unstable for thin structures. The vector cross product bereen , and R in

the Green's function may lead to computational difficulties by virtue of the small

angle subtended, as in the case of the thin-wire [Ref. 9]. There is one unique feature

of these integral equations for the induced surface current, J5, which is important to

the discussion of natural resonance scattering. The unknown surface current, JI

inside the integral in both the MFIE and EFIE has the retarded time r argument.

The retarded time '=t-R/c is always less then t since the P.V. integ. .iu the

point R=O. Considering this feature, the unknown current J,(t), at any given time

t, can be calculated from the MFIE in (2) using the known incident field at time t

combined with the integral of terms which are known from the past history of the

current. From another point of view, the effect of the source current at any point r,

9



is delayed by a time R/c in affecting the current at the observation point r. This

point forms the basis of an iterative technique, termed ;iine-stepping, for constructing

the solution. The surface current may be determined by "stepping on" in time, thus

eliminating the matrix inversion required for the numerical . ,:. w, of the frequency

domain integral equation. Figure 2 shows the region 0& ;' -at.". space-time for

the one-dimensional case (x,t). This region is defined by ct-I .-x' I <0 and denoted

by the shaded area.

C t

(x, -t)

Figure 2. Region of Interaction

The same general procedure can be similarly employed for solving the EFIE

(1). The current at the spatial point of observation, and at some time t, can be

IV



calculated in terms of the known incident electric field at that same spatial point and

time, and from the integral of terms involving retarded time [Ref. 8]. This point is

further illustrated in the case of a thin-wire.

C. NATURAL RESONANCE SCATERING

The following discussion is based upon the theory described by Morgan [Ref.

4]. The MFIE (2) describe the induced current on the surface of the object in terms

of the ir tident field or "physical optics" part, and in terms of the "feedback" current.

Figure 3 shows the situation in transient scattering. An incident field with short pulse

duration illuminates the scatterer. In the case of a radar it can usually be considered

a plane wave. Once illumination of the object is completed, for t>t1 , HtflC=0, and

only the source-free currents remain on the object, generating the natural modes.

These modes are of the form Jn(r) exp(s,,t), where the natural resonance frequencies

s,=u,+ja, are functions of the scatterer geometr, and composition. The SEM

representation of the current takes the form of a summation of damped sinusoids

which can be expressed using complex exponentials as

'r't-- aJ(r) ' ,t > tt. (3)

Since J(r,,t) is real, the complex exponents sm, which are poles in the complex

frequency plane, and the weight coefficients Am come in conjugate pairs. For a

practical incident field, having a finite bandwidth, only a limited number (say N) of

11



natural resonance modes will be "significantly" excited. The scattered field which is

generated by the induced current is composed of two parts; an early-time driven

response and a late-time natural mode response [Ref 4]. The early-time scattered

field can be described as a linear combination of two terms. The first is an aspect-

dependent physical optics term.

INITIAL
IMPACT - D

FPOINT

SI-ORT PULSE
INCIDENT FIELD

WAVEFRONT

- Figure 3. Short Pulse Wave Illumination [After Ref. 4]

The second term Uescribes the scattered field due to the source-free current

distribution. These currents are integrated over the time-varying portion of the

surface to get the contribution from all previously illuminated points which are dot-

shaded in Fig. 3. This term can be represented by the SEM expansion having the

12



same exponential resonance terms with time-varying coefficients (SEM class 2). The

late-time scattered field is due to the source-free currents that remain after the

incident field has completed its illumination of the scatterer. The late-time starts

after a delay of To=T+2D/c from the initial impact of the incident field on the

object, where T is the practical incident field pulse width, and D is the length of the

object in the direction normal to the wavefront of the incident field. At time TO the

;±tegral is calculated over a fixed surface area, and thus the SEM representation for

the late-time is a summation of the same exponential resonance terms with constant

coefficients (SEM class 1).

In summary, the monostatic transient scattered signal waveform can be

described in the following form [Ref. 4]

y(t) =-yE(t) .[ U(t) - U(t- T,)] + yL(t) U(t-T.) + N(t) (4)

where U(t) is the Heaviside unit step function, yr(t) is the early-time response, yL(t)

is the late-time response, and N(t) describes the measured noise and other signal

pollutants. The late-time portion of the scatterer response to such an incident field,

with its unique features, is considered in the process of this research. The discrete

form of the late-time response is obtained in order to set up the required ARMA

model.

13



D. THIN WIRE CASE

Consider the case of a perfectly conducting cylindrical thin-wire scatterer. The

geometry of the problem is shown in Fig. 4. The radius of the wire, a, is small

compared to the wire length, L. The radius, a, is also small compared to the shortest

significant incident field wavelength, X.

IFI

t, I z

KI

I --

Figure 4. Geometry of a Cylindrical Thin Wire Scatterer

In this case the thin-wire approximation is applicable; that is, the azimuthal surface

curre.'t is negligible compared to the axially-directed component. Then the surface

14



current density, Js, can be written as

J'(z) = a  (5)
2ira

where 12 is a tangential unit vector pointing in the axial direction. The current is a

function of z only. The incident electric field E" has contribution to the surface

current only in the 42 direction. Under these conditions the integral equation for this

case can be written, using the EFIE type (1), as

L

4rEz(z,1) =r Iz

Co 0 .R Z

~ 3 ~ a (6)

+ (i-z ) 0 lk(z',i~dz' (6)
C .C R2 ack

where R=r-r, is the vector from the current element along the z axis pointing to the

point of observation on the surface of the wire, IR=[(z-z') 2+a2J"2, while r=t-R/c

is the retarded time. The integral in (6) is not a P.V. type integral since r, ,r.

15



There are several approaches to solve the thin-wire integral equation arising in

time-domain scattering problems. The interpolation procedure and the finite-

difference approach are presented in [Ref. 8]. The general interpolation procedure

is to subsectionalize the thin-wire by dividing it into N segments and then to define

a set of basis functions for expressing the unknown current, I, in each of these

segments. Similar segmentation is also necessary for the time domain, choosing the

appropriate time interval with regard of the spatial interval. An interpolation scheme

in time and space is then used to express the current at one node (space and time)

in terms of the current values in the neighboring nodes. The final step is to describe

the thin-wire integral equation using the expansions and apply point matching to

generate the desired matrix equation.

A second approach is to use the finite-difference method to approximate the

differential operators appearing in the time-domain integro-differential equation.

This approach was introduced by Sayre and Harrington [Ref. 10] where the EFIE is

written in terms of the vector potential A. The solution for the vector potential A can

be based on the finite-difference method, as applied to the drivmn wave equation.

In fact, aside from the specified boundary conditions, the solution has the same form

as will be employed in the acoustic string case in the following chapter.

E. SUMMARY

The late-time portion of the scatterer response can be represented by a

weighted summation of natural modes. The modes are functions of the scatterer

16



geometry and not of the incident excitation. The EFIE which describes the surface

current on the scatterer can be solved numerically for the case of a thin-wire.

Although, in principle, the ARMA representation can be derived by discretizing

an integral equation, the full topological connectivity wrought by the Green's

function yields an imposing difficulty. A better approach is found by employing the

finite-difference approach, with its "nearest-neighbor" connectivity. This will be

presented in Chapter III.

17



III. ELECTROMAGNETIC AND ACOUS' Z SCATTERING EXAMPLES

A. INTRODUCTION

Open region electromagnetic and acoustic scattering and radiation problems can

be formulated using the integral equation approach. Other techniques may also be

applied to these problems, both in the frequency- and time-domains. One of these

methods is the finite-difference scheme which provides a convenient means for

deriving a time-stepping algorithm for solving the EFIE. In this work, an exclusive

use of thLs method has been utilized to formulatp the problem of transient scattering

via the time-space wave equation, and to demonstrate the new approach of

presenting the late-time scattering response in a discrete ARMA model.

The objective of this chapter is to describe the numerical solution chosen for

this research. The derivation of the EFIE expressed in terms of the vector potential

is presented. An analogous case of a vibrating string of fixed length is then described

in conjunction w;th various methods of solution to complete the theory of the analog

form of the problem. A discrete form of the time-space wave equation using the

finite-difference method is then presented along with pe-Ainent numerical

considerations.

The wave equation with forcing term describes numerous physical phenomena

such a driven finite string or an illuminated transmission line. A computer program

entitled TH7.FOR was written to support this research, and a source listing is given

18



in Appendix A. The program provides the solution of the inhomogeneous time-space

wave equation. The string (or transmission line) can be excited by a Gaussian pulse

from different angles of incidence. The amplitude and width of the Gaussian pulse

excitation, as well as the number of segments on the string can be independently

selected by the user. Results in time-space are presented for different cases. Fast

Fourier transforms (FFT) are used to obtain the frequency-domain results from the

time-domain data. Results in these cases are also presented showing agreement with

the basis of the natural resonance scattering theory. Time-domain data provided by

the computer program was also used to check the ARMA model and is presented in

Chapter IV.

B. DERIVATION OF THE VECTOR POTENTIAL EQUATION

The Electr-c Field Integral Equation (EFIE) may be written in terms of the

vector potential A. The derivation begins with a slightly different form of the EFIE.

The scattered electric field, produced by the induced current, may be written in terms

of the scalar potential p, and the vector potential A, as

E(r,t)=-A-V4 . (7)

The scalar potential $ can be expressed in terms of A, via the Lorentz condition, as

V'A(r,t) + lijt a O- rt) = 0. (8)

at
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Applying the boundary condition of the electric field on the surface of a perfectly

conducting body in order to write Eq. (7) in terms of the scattered field, and using

the Lorentz condition to write Eq. (7) in terms of the vector potential, the tangential

component of Eq. (7) can be written as

t

h xEI=x- f nxVV.At', reS. (9)dxEU=rix& C2 _.•

Equation (9) is differentiated with respect to time to eliminate the integral. This

yields the following equation

nx .=nx---fixVVA, rES, (10)
at at2  c2

where the expression for the vector potential A in terms of the induced surface

current J, is

A(r,t)= t0 ds~t__R c Is. (1

Equation (10) may be reduced to the one-dimensional case of the cylindrical thin wire

along the x-direction, with length L and radius a, under the assumptions described

in Chapter II. The following equation is obtained

a2A 1 a2A _E_= _41reo (12)
ax2  c2 a 2 a
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The vector potential in Eq. (12) is defined in a slightly different manner from Eq.

(11). The vector potential A is defined as

A~)L J,(x',, -Rlc)d, (13)

with R=[(x-x') 2+a 2]12.

For the purpose of this work it was found convenient to modify equation (12).

The term which includes the incident field is replaced by the function f(x,t) which

describes the pulse excitation. A term which describes loss was added in order to

investigate cases where damping was included as well. The final equation, which has

been solved numerically by computer program, has the following form:

a2U(xt) 1 2U(xt) _ tU(x =f(x,t), (14)
ax 2  C2  & 2  at

where the function U(x,t) satisfies the expression, and t is the positive coefficient of

the loss term. Wher. P=O the equation is reduced to the lossiess case which is

simply the nonhomogeneous wave equation. The last step is to define the boundary

and the initial conditions in order to completely describe this problem.

Homogeneous boundary conditions have been set in this case to present a total

reflection at the ends of a string. This formulatitin also represents the cases of short

or open circuits at the ends of an excited TEM mode transmission line. In the
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electromagnetic case the potential on the ends of the single wire scatterer is non-zero

and is thus not properly represented by the wave equation solution considered here.

In terms of the function U(x,t) the boundary conditions may be written as

U(0,t)=U(L,t)=0. The initial conditions can describe the voltage or current on the

transmission line before the incident field impacts. There is assumed to be no initial

voltage or current. Likewise, the string is initially at rest in the acoustic case. These

conditions are formulated by homogeneous initial conditions as U(x,0)=0, and

aU(x,0)/It=0, where 0_ x 5L. Note that homogeneous initial conditions may be

replaced by some functions U(x,O)=h(x) and aU(x,0)/It=g(x), where 0:5 x _5L, in

order to make the partial differential equation (PDE) homogeneous. This point is

further illustrated by the ARMA model presentation.

C. VIBRATING STRING WITH FORCING FUNCTION

The case of a thin wire is analogous to the problem of a vibrating string of fixed

length. This problem is thoroughly discussed in the literature, including [Ref. 10]

which covers this topic in considerable detail. The formulation of a vibrating string

problem is

32U(x,t) 1 &2U(x,t) _ (15)
x2  c2  -t 2

with the boundary conditions U(O,t)=0, U(L,t)=0, and initial conditions U(x,O)=h(x),

and aU(x,0)/&t=g(x). Several methods are available to solve the problem of a
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vibrating string of fixed length. One way to solve it is by separation of variables.

This yields the eigenvalues and eigenfunctions corresponding to the homogeneous

boundary conditions. A Fourier series method is then used to satisfy the initial

conditions. This is found to be a convenient means to solve the problem in many

cases. However, difficulties may arise due to the complexity of some initial condition

functions which must be integrated. One applicable example in the case of transient

scattering could be the function which describes a Gaussian pulse excitation.

An equivalent technique, but in some ways more useful, is the "method of

characteristics". In this approach the d'Alembert's solution is applicable [Ref. 11],

with the following form

x~ct

U(x,t) = h(x-ct)+h(x+ct) + 1 f g(x')dx'. (16)
2 2,c

The solution is valid for the region defined by 0< x-ct <L and 0< x+ct <L. This

region is shown dot-shaded in Fig. 5 which describes points of position and time such

that signals from the boundary have not already arrived. The modification to the

solution is made considering the boundary conditions which, in turn, imply multiple

reflections as illustrated in Fig. 6. The simplest way to obtain the solution is to

extend the initial condition functions as odd functions (around x=O) with period 2L.

With these odd periodic initial conditions, the method of characteristics can be

utilized as well as d'Alembert's solution (16).
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Figure 5. Characteristics [From Ref. 11)

t

0 L

Figure 6. Multiple Reflected Characteristics [From Ref. 11]
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D. FINITE-DIFFERENCE APPROXIMATION TO THE WAVE EQUATION

The discrete form of Eq. (14) is required for the numerical solution. In general,

numerical sulutions are required in cases where the shape of the area of integration

or changes to the boundary and initial conditions make analytical solutions

impossible. These changes do not fundamentally affect finite-difference methods

although sometimes modifications to the methods are necessary. In this work the

finite-difference method was used to approximate the derivatives in Eq. (14), and to

make use of the time-stepping algorithm previously mentioned.

The finite-difference iiithod may be derived based on a Taylor's series

approach. The idea is to approximate the function U(x) at a point near x=xo, e.g.,

(xo__.Ax), using the polynomial approximation of the Taylor series. Through the use

of Taylor series, it is possible to approximate derivatives in various ways. A finite-

difference approximation for a derivative can be written using forward difference,

backward difference or central difference. The central difference is found to be more

accurate [Ref. 11] and it was used in this work.

Using the central difference formula, the first partial derivative is written as

au U(X +AXyo)-U(xo-Axyo) (17)
ax 2Ax

and the second derivative as

2 U(Xy) U(Xo+Axyo)-2U(xo,y°)+ U(x° -Axyo) (18)

x5 Ax2
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Figure 7 shows the discrete space-time plane of the finite string problem. The

stripg length L is subdivided into N segments with Ax=L/N being the spatial interval.

The time interval is chosen to be At=Ax/c, where c is the velocity of propagation.

The notation U), with the spatial segment i and the time segment j, is used to

describe the function U(x,t), where x=iAx and t-jAt.

±=j&t

A

0 1 2 3... 1 N

Figure 7. Space-Time Discretization

The approximated PDE for Eq. (14) may be written as

U/,,- Ul+ ./, 1;-2/ " + j "-V4-
.I i 1(9)

Ax2  c2  At2  2At (
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The relation between the space interval and the time interval may be used in

Eq. (19) to yield Eq. (20). Equation (20) is written for Uij 1 in a form called the star

operator. The star operator is illustrated in Fig. 8.

U(i,j-il )

U(i-.1,j) U(i--+,j)

f(ij)

U(ij-1)

Figure 8. Star Operator

Fquation (20) describes the standard five-point finite-difference approximation to the

Laplacian V2 with slightly different weights.

- [ , +" + (20)

where
A- 2 P=- c -A, D=-AAx 2  cl-c=Ax2+cl 2+cl

Note that when E=0, which is the lossless case, cl=0, A=1, P=-1, and D=-Ax2 . The

star operator is used to describe the finite-difference equation in a simple way. Note

that in this case the value of Udoes not contribute since At=Ax/c. Given the initial
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and boundary conditions, which are homogeneous in this case, the values of the

function Uj at any point (ij) can be calculated by marching forward in time using the

star operator. This is the solution procedure applied in the computer program given

in Appendix A.

E. NUMERICAL CONSIDERATIONS

In any application of numerical solutions, the questions of accuracy, stability,

and information bandwidth must be resolved. This section includes a discussion of

some numerical aspects which are relevant in this case.

The finite-difference approximation to the first derivative is consistent, meaning

that the truncation error vanishes as Ax---O. Hence, the exact solution is expected to

converge as the number of segments increases. The sampling rates in the spatial and

temporal domains are key factors in determining the accuracy of the numerical

solution. The spatial sampling rate should be high enough to adequately resolve the

spatial variation of the incident field as it propagates past the scatterer. The time

sampling space should be high enough to adequately resolve the time variation of the

pulse excitation. However, the sample points in time are not indeoendent of the

space interval. Correlation between them is required because of equivalence between

space and time in the retardation effect. Since the interactions between the currents

on different points on the scatterer depend upon the velocity of propagation, the time

sample spacing, At, must be related to the space sample interval, Ax by cAt: Ax [Ref.

9]. This is also known as the Courant stability condition for the wave equation [Ref
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11]. The inequality is equivalent to requiring that the space sample points be at least

as far apart as the distance the electromagnetic wave tratels, with velocity c, in the

interval between two sample points in time. The relation between At and Ax

determine the stability of the solution. The idea is that the numerical process should

limit the amplification of the initial conditions. In this simple case of a finite string,

the time sample spacing is related to the space sample interval by cAt=Ax.

Among the factors which determine the sampling rate are the shape and the

width of the incident field pulse, the scatterer size relative to the pulse width, and the

highest frequency natural mode to be obtained by the solution. A delta function

space-time impulse whose frequency spectrum extends from zero to infinity with

uniform amplitude is desired. However, this is impossible from a practical

standpoint. The approximation is made by a Gaussian impulse since it rapidly decays

to zero. The same property is applicable in the frequency-domain, where the

amplitude rapidly decreases with increasing frequency. In order to adequately resolve

the incident field in time and space the appropriate sample spacing, which result in

reasonably accurate numerical results, have bee,, found to be on the order of one-

fifth and up to one-tenth the pulse width in time and space, respectively. The pulse

width is determined by the scatterer size and the highest frequency information

required.
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F. COMPUTED RESULTS

A computer program was written to obtain time-domain results to support this

investigation. The program numerically solves Eq. (14) using the finite-difference

method. The solution is determined using the procedure described in previous

sections and the pulse shape is Gaussian. Gaussian pulse parameters such as pulse

width, amplitude, and angle of incidence can be changed independently by the user

to provide results for different cases. Additional parameters such as string length,

number of segments on the string, time delay for peak pulse impact, and the number

of time steps to be computed can also be varied. The coefficient E, for the case of

loss, can be altered by the user within the program to investigate lossy cases. Note

that for t=0 the program will solve for the lossless case. Figure 9 shows the

Gaussian pulse excitation for different angles of incidence. Broadside pulse excitation

is shown in Fig. 9(a), and Fig. 9(b) shows the pulse excitation for a 60 degree incident

angle. In both cases there are 10 time samples in the pulse width, where the pulse

width is defined between the points at which the amplitude is 10% of the maximum.

Figures 10 and 11 show some results in the space-time domain. Figure 10

shows the displacement on the string along 200 time steps for the case of broadside

excitation. A one-meter "electromagnetic string" was assumed, with c=3x100 mis.

The one-meter length was subdivided into 15 segments which results in a space

interval of 1/15 meter. The time interval is related to the space interval by the

velocity of light ,p, which gives At=(AX/c)= 0.22 ns. ThE pulse excitat;o- has a

Gaussian shape with pulse width of 2.0 ns. Figure 10a shows the result for the
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x

(a) Broadside Excitation

x

(b) 60 Degrees Excitation

Figure 9. Gaussian Pulse Excitation
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lossless case and Fig. 10b is the case with loss added to the system by setting the

value of the coefficient t in equation (20) to be non-zero and positive. In these

cases, when the string is excited by a broadside Gaussian pulse, the displacement is

symmetric along the string. Symmetry is observed about the center of the string due

to the symmetric boundary conditions, initial cunditions and driver. The difference

between the lossless case and the lossy case is in the amplitude. The displacement

of each segment is a periodic function with a period of 2N time steps where N is the

number of segments on the string, except in the early-time when the incident pulse

is still exciting the string. This point is illustrated in Fig. 11. In this figure, the

displacement of segments number 2 and 8 are presented for the lossy case having

periodic propagation except when the string is excited by the incident pulse. The

period is 30 time steps which is exactly 2N for N=15 segments. The early-time is

about 15 time steps including several time steps before the pulse starts.

Figures 12a and 12b show results for the case ot 30 degree incident angle on

the Gaussian pulse. All other parameters are the same as for the case illustrated in

Fig. 10. As expected the displacement of the string is asymmetric. The early-time

in this case is longer than in the case of broadside excitation since it takes more time

for the incident pulse to complete its excitation of the string. The time-domain

characteristics in these results did not change. Both have the same period (2N time

steps). Figure 12a shows the results for the lossless case and Fig. 12b for the lossy

case.
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(a) Lossless Case

(b) Lossy Case

Figure 10. String Displacement for Broadside Excitation
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Figure 11. Displacement of Segments 2 and 8 (Lossy Case)
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(a) Lossless Case

(b) Lossy Case

Figure 12. String Displacement for 30 Degree Incident Angle
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Time-domain results were further processed to obtain frequency-domain results

using the Fast Fourier transform (FFT). The objective was to check the time-domain

results against the natural resonance mode theory. The frequency spectrum of the

displacement on each segment was checked in order to analyze the resonance mode

presentation as a function of the position on the string. The procedure includes

computation of the spectrum of the displacement as a function of time for each

segment on the string using the FFT. A representative example is shown in Figures

13 and 14, where time-domain data of Fig. 12 was used in this case. There are 15

segments on the string and the incident angle is 30 degrees. Figure 13 shows the

frequency spectrum of the displacement of segments number 3, 6, and 11. It is clear

that the modes have the same frequencies for these segments, although each with

different energy depending on position. Figure 14 shows similar results to that of Fig.

13, but for all the segments on the string. At this point a tentative conclusion may

be made that the resonance mode frequencies are independent of the position on the

string. Note that the FFT of 256 points was taken using the data including the short

early-time data. In this case, the early-time data may be used since this portion also

includes information about the modes. Figure 15 shows the frequency spectrum in

the case of broadside excitation and with the same parameters as in the case of 30

degree incident angle (Fig. 13). The differences between the results are explicitly

presented. In the case of broadside excitation, only even modes are excited while in

the case of the 30 degree incident angle both even and odd modes are excited.
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Figure 13. Resonant Frequencies (30 Degrees)

37



102

10'

0

10.2

10-2

0 0.5 1 1.5 2 2.5

Frequency (liz) X109

Figure 14. Modes of All Segments (30 Degrees)
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Figure 15. Modes of All Segments (Broadside)
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The fact that these modes are aspect-independent may be checked in the

frequency-domain by using the time-domain data for different incident angles.

Figures 16 and 17 show results for various incident angles. The string was subdivided

into N=25 segments. The Gaussian pulse width was set to 2 nanoseconds in order

to allow 15 samples in the 10% pulse width. These parameters result in a sampling

frequency to be 7.5 Ghz, thus providing a frequency limit of 3.75 Ghz, as determined

by the Nyquist sampling theorem. However, the incident pulse bandwidth is less than

1 Ghz, hence the modes are presented only within this bandwidth. The string was

excited from incident angles of 0, 25, 50, and 75 degrees. Figures 16 and 17 show

results of a 256 point FFT of the time-domain data for the same segment in each

figure. These figures show results obtained on segment number 22 and 6,

respectively. In both cases the modes excited for different incident angles appear to

be the same. Note that for the 0 degree incident angle (solid line), only the even

modes are excited.
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Figure 16. Modes on Segment 22
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Figure 17. Modes on Segment 6
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IV. THE DISCRETE ARMA MODEL

A. INTRODUCTION

Based on the theory of natural resonance scattering, a radar target can be

considered as a Linear Time-Invariant (LTI) system. There are several ways of

describing LTI systems. A linear system can be described by its impulse response,

by means of linear difference equations, a system diagram or by the system transfer

function with poles and zeros. The system transfer function model is extensively used

to present natural resonance modes in transient scattering research. As previously

mentioned, these modes are functions of the scatterer geometry and composition, and

are independent of the incident excitation. A finite subset of the scatterer poles can

possibly be used to represent the scatterer in the process of discrimination.

An alternative linear system model may be used to describe a scatterer in order

to find its natural modes in a relatively simple way. This new approach describes a

system by meays of difference equations. Different scatterers, which are considered

LTI systems, may be described by means of linear constant-coefficient difference

equations. Once such a model has been set up for a specific scatterer, the natural

modes can be directly determined by the coefficients of the differential equation.

In this work such a model has been set up for the late-time response of a

vibrating string with forcing function. An alternate physical problem, which fits the

mathematical model, is an illuminated TEM mode transmission line with either open
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or shorted ends. In the equivalent electromagnetic case the late-time starts after the

incident field has completed its illumination of the target, and is completely described

using a weighted expansion of complex natural modes. During this period the

scatterer acts as a recursive system, generating the natural resonance modes. The

output of this system depends only on previous values of the output. This type of

system can be described by an auto-regressive moving-average (ARMA) model. The

coefficients for the recursive terms are constant since the feedback mechanis.'is on

the scatterer are constant and time-independent. Moreover, the ARMA model which

describes the system has the same recursive coefficients for all spatial points, as

expected.

Two cases are considered: lossless and lossy. The analytical solution and the

numerical solution for the natural modes in both cases are presented including

comparisons with computed results. Development of the ARMA model for each case

is then presented. Demonstrations of these developments are included through

examples for both the lossless and lossy cases.

A variety of methods are currently used to estimate ARMA parameters. These

methods have been used to estimates poles of scatterers by applying them to given

data obtained by measuring the backscattering signal. In this work only the basic

version of the Prony's method is applied to data obtained by the numerical solution

described in Chapter III. The objective was to verify the development of the ARMA

model. Results of the ARMA model are compared with results obtained using the

Prony's method for pole estimation [Ref. 131.
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B. THE PROBLEM

The problems of transient electromagnetic scattering or the equivalent problem

of acoustic scattering may be treated in the sampled signal case by considering the

scatterer as a linear system whose input and output satisfy a linear constant-

coefficient difference equation of the form

N L

),n)=E ak y(n-k)+E bk x(n-k). (21)
k= kWO

For transient electromagnetic scattering, it is assumed that no surface current is on

the scatterer before the scatterer is excited by the incident field, while the scatterer

is initially at rest in the acoustic case. Therefore, the system may be considered

casual, linear, and time-invariant. The a's and the b's in this case are real constants

and the difference equation in Eq. (21) can be used to compute the output

recursively [Ref. 6]. Considering the late-time case, the input x(n) is zero for n>no,

where the discrete time no corresponds to To in the analog case. This is the time at

,vhich the incident field has completed its illumination of the scatterer. Hence, the

difference equation for the late-time has the form

N

y(n)=" ak y(n-k) n>no. (22)
k=1

Equation (22) describes the system model for the late-time where the unknowns are

the coefficients a,, a2, ..., aN, and the number of delays N. Figure 18 shows the form

of the system diagram, which serves as a graphical way of representing the same

information contained in the difference equation (22). Equation (22) is referred to
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as the homogeneous part of the general form of an Nth-order linear constant-

coefficient difference described by Eq. (21) with a0= 1.

+ ------ 4--*+ 4 y(n)

ONNI a 82

0 --. ~ 0 00

,.(____ : " ( ) : , (n )__, y,

y(,- N) y(n-N 41) y(n-3) ") ()- )

Figure 18. Realization of the General Model [After Ref. 5]

The homogeneous equation (22) has a family of solutions of the form

N

y(n) A,, z,, (23)
m~d

where zm are complex numbers. A unique solution requires a set of N auxiliary

conditions since tb're are N undetermined coefficients. Substituting Eq. (23) into Eq.

(22), the complex iumbers zn must be roots of the polynomial

akz-k=O, (24)
k-O

assuming that all N roots of the polynomial in Eq. (24) are distinct. Based on the

theory of natural resonance scattering, these roots are the poles in the z-transform
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as the homogeneous part of the general form of an Nth-order linear constant-

coefficient difference described by Eq. (21) with a.= 1.

4 + 4. .- y(n)

-182
a-' 

8N 
-t2 

a3 
I 

"

D D D
y(n -N) y(n -N4+-1) y(n -3) yn-) y-l

Figure 18. Realization of the General Model [After Ref. 5]

The homogeneous equation (22) has a family of solutions of the form

N

y(n)=) A,,z,,.". (23)
m=1

where zm are complex numbers. A unique solution requires a set of N auxiliary

conditions since th-re are N undetermined coefficients. Substituting Eq. (23) into Eq.

(22), the complex iumbers z., must be roots of the polynomial

E az-4=0, (24)
k-O

assuming that all N roots of the polynomial in Eq. (24) are distinct. Based on the

theory of natural resonance scattering, these roots are the poles in the z-transform
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x and t may be separated by substituting the solution (26) into the PDE (25) to

obtain the eigenvalue problem

0 () RU (x)=0, (27)

ax2  c2  
(

with the boundary conditions un(O)=un(L)=O. The general solution for the

eigenvalue problem has the form

.. INC -s.4c (28)Un[(X)=C1 e +C2e .

The boundary conditions are applied to obtain the solutions for s, and the associated

modes. For the lossless case sn=jwn, where On=nrrc/L for n=±1, ±2, .... Natural

resonance modes have the form

UV(x,t) = sin (.--x) ej(oAt. (29)

L

The trivial solution is obtained for n=O. The solution for the initial value problem

may be obtained by writing the final solution as a superposition of natural modes

U(x,t-- A U,V(x,t. ntO. (30)

The constants A. which are usually complex, can be found by applying the initial

conditions and representing them by the appropriate Fourier series, then matching

term by term.
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An alternative way to find the natural mode expansion for the initial value

problem is by using the fact that these modes appear in conjugate pairs for real initial

values. In this case the solution can be represented by

U(xr) csin(-x)s (6,t+ ^), (31)
R-1 L

where U.,=Un' The real coefficients cn and the unknown phase On are determined

by the initial conditions using Fourier series to represent the initial condition

functions and matching term by term.

For the lossy case the solution represented by Eq. (26) may be applied,

Un(x)=sin(nmx/L), but a slightly different solution is obtained for the modes. This

solution is substituted into the lossy wave equation which has the form

&U 1 02U aU (32)

ax2  c2&t2

where E >0 is the coefficient for he loss term. The eigenvalue problem for the

spatial variable x has a different form, yielding a complex set of solutions for sn.

Substituting Eq. (26) into Eq. (32) to separate the variables x and t, the following

equation is obtained for the variable x:

-2 2
0u.(X) + s)u(x)=O, s.=y.+j%. (33)

ax2  + 49
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The solution for sn is found as roots of the quadratic equation

sn2 + C2S +( n7c. 2  (34)

L

D. NUMERICAL SOLUTION FOR RESONANCE MODES: LOSSLESS CASE

The solution for the natural resonance modes involves the finite difference

discrete form of the wave equation, using the star operator. Figure 19 shows the

space-time discrete domain as applied to this development. The finite difference

approximation results in a discrete equation of evolution which may be written for the

lossless case in the following form

U(k) = AU(k-1) - 6(k-2), (35)

where

u(xlltk) 0 1 0 ... 0

- ux2,k)10100

U(k)= A=00
00101

u(xMtk) 0 ... 0 1 0

The vector U(k) is composed of unknown nodal values at the k-th time step and A

is an M x M sparse matrix with ones along the two diagonals adjacent to the primary

diagonal, regardless of size. The number of unknown nodal values is M which is
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related to the number of segments by M=N'-I, where N' is the number of

segments. The discrete form of the natural mode solution has the separable form

iFn(k) = u.Zk, Z k=Ce St =Ces , (36)

where U, is a constant in k, and sn=jo n in the lossless case.

-I-

U ( k

U(l<)

U(I<- 1) - __,,t__

U(I<-a),[ ,

U ... U=O
A,-

0 1 3 ... I L

Figure 19. Space-Time Discretization for Mode Solution
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Both ua and Zn should have acceptable values to solve Eq. (35). The solution for the

natural modes may be obtained by substituting the solution in Eq. (36) into Eq. (35)

to yield the following eigenvalue problem

A.= (Z,+ Zl) = 1, 17,. (37)

Equation (37) represents M linearly-independent equations for the M unknown

eigenvalues I.n. After solving Eq. (37) for the eigenvalues, the modes can be solved

by the relation between Z n and X ., via Eq. (37), as

Z n+z,; =x '. (38)

Equation (38) solves the natural modes. The number of modes is 2M since for every

value of In there are two solutions for the 24 which are conjugate values. This can

be explained by the fact that in the finite difference equation (35) there are 2M

degrees of freedom since there are M unknowns, and each unknown requires two

previous values. From this, it is concluded that 2M coefficients are expected to

appear in the ARMA model. In terms of number of segments, the number of

coefficients in the ARMA model is given by N=2(N'-1), where N' is the number of

segments.

The initial condition solution may be obtained by a superposition of the modes

as

N

(39)U(k) =EA, U,,(k) , (

n=1
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where N is the number of modes. The A, terms are excitation dependent amplitudes

and un(k) are excitation independent modes. There must be at least N=2M modes

to allow the superposition (39) to be complete for any given initial conditions.

E. NUMERICAL SOLUTION FOR RESONANCE MODES: LOSSY CASE

The same solution procedure followed in the lossless case is applied to the lossy

case. The finite difference equation may be written as

U(k) = c1A{JTk- 1) - c2U(k-2), (40)

where c,=2/(2+A,cEAx), c2=-c1+(c Ax)/(2+c Ax), and both A and U(k) have the

same form as for the lossless case. Note that for the lossless case ( =0) c1=1 and

C2 =-1. The same solution (36) is applied with sn=an+jto,. By substituting the

solution (36) into the PDE (40) and separating the variables, the following eigenvalue

problem is obtained

C A n(Zn + c2Z,-)U0,= ;,Xn - (41)

Equation (41) represents M linearly-independent equations for M unknown

eigenvalues. Solving Eq. (41) for the eigenvalues, the modes can be obtained by

using the relation between ;-n and Z n in Eq. (41) as

Z +c2 Z.,= X. - (42)
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The initial value problem may be solved by a superposition of the natural

modes as in the lossless case, with N=2M modes to allow the superposition (39) to

be completed for any given initial conditions.

F. ARMA MODEL DEVELOPMENT

The numerical solution shows that the modes are spatially-independent, i.e. all

nodes have the same Zn. Hence the ARMA model may have the following form

N-2M
U(k)= , amnU(k-m), (43)

m=1

where the am's are the same for all spatial nodes, even those next to the boundaries,

and U(k) is the superposition of all Un for ne[-M,M]. Note that the number of

the coefficients is N=2M, where M is the number of spatial nodes along the string

excluding those on the boundaries. The unknown coefficients can be determined by

applying the z-transform to the recursion equation (43), which yields

N-i k - k-m

UZ,= amUn (44)
m=1

Equation (44) may be written for the coefficients in the form

N
aZ, N-, (45)

m=5
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or in the form

N N-I N-2
_Z, a2ZNin a Z-a =0. (46)

Factoring the left hand side of Eq. (46) into first-order terms gives

(Z-Z) (Z-Z ) (Z Z2) (Z Z -9) "(Z-ZM)(Z-Z-,) (47)

where Z. are the poles and Zn=Z.n'. The last step is to use the results of the natural

modes in Eq. (47) generating the polynomial and comparing term by term to Eq. (46)

to find the values of the coefficients.

The validation of the ARMA model can be obtained by showing that Eq. (43)

can be derived directly from the equation of evolution (35) by working backwards.

This point is further demonstrated using an example for the lossless case.

G. VALIDATION EXAMPLE: LOSSLESS CASE

Consider the case of N' =4 segments of an undamped string. The number of

unknowns is M=N'-I=3. The vector of the unknown nodal values at the k-th time

step has the form

U(xl,tk)

U(k) = u(X2,tk)

U(X3,tk)l
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The equation of evolution in this case has the form

U(k) =AU(k-1) - U(k-2), (48)

with the matrix 01

4=1 0 1.
010

The number of discrete natural modes is N=2M=6. The eigenvalue problem with

the form of Eq. (37) is obtained by substituting the separable form (36) into the

equation of evolution (48). The eigenvalue problem has the following form after

rearranging the equation

A-U.=(Z. -+Z.1) U -, u. (49)

Substituting A and solving for the eigenvalues gives three solutions: X n=0, and

In=_V2 The solution for the modes is obtained via

The solution has six modes: Zn=e- e e:j3 4. Figure 20 shows the six poles

in the z-plane. The poles are on the unit circle since this system is lossless. Since

Zn= e, where 0=tonAt, the modes are the same as in the exact case

tOn=nr/4At=n7-c/L.
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Figure 20. Modes of 4 Segment Undanmped String
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The ARMA model has the form

6
U(k) = E a, U(k-m). (51)

rn=1

The z-transform of Eq. (51) is

6
z=- . (52)

M:=1

The coefficients am can be found by factoring

gz) (Z; gz) (53)

with the known solutions for the Z,. The polynomial obtained by this procedure is

Z6 +Z4 + Z2 + 1, (54)

which gives the coefficients: a1 =O, a,=-I, a3=O. a4=-I, a5 =O, and a6 =-l. The

ARMA model for this case has the form

U(k) = -U(k-2) - U(k-4) - U(k-6). (55)

Verification of the ARMA model may be done by using the finite-difference

equation of evolution (48) to find the coefficients in Eq. (55). The procedure is to

use Eq. (48) to write U(k-1), U(k-3), and U(k-5) to finally obtain the form in (55).

This is shown in Appendix B.

In a case of a 5-segment string, there are 4 uniknowns for each time step, and

therefore 8 modes. The poles obtained in this case are Zn=ei-"5, e--i2=/. e p= r1, and

e -- 7'4 5. This poles are shown in Fig. (21) on the unit circle of the z-plane.
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H. VALIDATION EXAMPLE: LOSSY CASE

Consider the case of N ' =4 segments on a damped string. The number of

unknowns is M=N'-1=3. The vector of the unknown nodal values at the k-th time

step has the form of that in the example of the lossless case. The equation of

evolution in this case has the form

U(k) = cA'U(k- 1) - c2 (k-2), (56)

where 2 c Ax
2+c Ax' c

2
- 2+c Ax a

The same matrix A as in Eq. (48) is applicable in this case. The number of discrete

natural modes is N=2M=6. The eigenvalue problem with the form (37) is obtained

by substituting the ,eparable form (36) into the equation of evolution (56). The

eigenvalue problem has the same form as in the lossless case. Substituting A and

solving for the eigenvalues gives three solutions: Xn=0, and Xn= ±cV2. The solution

for the modes is obtained via

Z. + c2Z,1 = X , ;L,,=0, ca e, -cir. (57)

The solution has six poles,

Z =li2je 2 , z= 2
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Figure 22 shows these six poles in the z-plane. The poles are inside the unit circle

and on a circle representing equal loss for all modes. In the electromagnetic case,

as the frequency increases the higher frequency modes have more loss.

Z-Plane

1 "

0 .5 . ... ................ .. .. .. .......... ........... ... .. .. . .Lossy Cas0

N 6 Modes!

-0 .5 .... .. .... .. .. ............ ... ......... .... ......... ................. ....

-............... . ........ J! ....... ..............--

0-----v

-1 -0.5 0 0.5 1

Real z

Figure 22. Modes of 4 Segment Damped String

The ARMA model has the form

6

U(k) = a U(k-m). (58)
mzl

The same procedure used to find the coefficients for the lossless case is applied in

the lossy case. The coefficients am can be found by factoring the solutions for Zn.
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The coefficients in this case are: a1=0, a2=3c2+2c 2, a 3=0, a 4 =-3c 2
2 +2c 2c 2, a5=0,

and a6=c2
3. Note that the non-zero a's are negative numbers with decreasing

absolute values as their index increases. The ARMA model in this case has the form

U(k) = (3c2,+2c) U(k-2) -(3c +2c,2cbI (k-4) + c'U(k-6). (59)

Checking the coefficients by using c1=1, and c2=-1 yields the same coefficients

obtained in the lossless case.

I. COMPUTED RESULTS

The objective of this part of the work was to obtain additional verification for

the ARMA model. ' fe idea was to apply an algorithm which can estimate ARMA

model coefficients to the time domain data generated by the computer program

TH7.FOR. There are several methods available to estimate these parameters.

Among them is the Prony's method [Ref. 13]. The Prony's method implemented via

a computer program entitled TEST.M. A source listing is given in Appendix C. The

program implements the following procedure for each segment on the wire.

Using the time-domain results of a given segmcnt, the following M x M matrix

and vector are generated

u(t-1) u(t-2) ... u(t-M) u(t)

u(t-2) u(t-3) ... u(t-M-1) V u(t-1)

u(t-M) u(t-M-1) ... u(t-2M-1) u(t-M+ 1)
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where M is the number of coefficients, and t is the time step at which the ARMA

model is applied. The time-step t should be "late" enough so the time step t-2M-1

is in the late-time portion of the time-domain solution, u(t) of the given segment. The

vector 4 is composed of the coefficients a1, a2, ...aM. The am's coefficients are

computed by

a(60)

where P-1 is the inverse matrix of P. This method was applied to various cases. The

results show that the coefficients are the same for all segments. The coefficients are

also the same for any time-step t in the late-time, t-2M-l>n o, where no is the initial

time-step of the late-time portion of ihe system response. For all lossless cases the

results show coefficients with the form a1 =0, a2 =-1, a3=0, a4=-1, ...am=-l. In all

lossy cases the results are a,=0 for odd i, and decreasing absolute values of negative

numbers a,, for even i. In some cases the results were different from segment to

segment. In those cases where the results produced segment-dependent coefficients

the frequency response showed that not all of the modes where excited. A

representative result is shown in Fig. 23. In this case, the damped string was

subdivided into 11 segments, hence the number of modes is 20. The same

coefficients were obtained for all segments, for various incident angles, and at each

time-step in the late-time.
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Figure 23. ARMA Model Coefficients of Damped String
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VI. CONCLUSIONS

The solution of electromagnetic natural resonance modes by means of finite

difference equations promises to be useful and effective. The ability to construct

discrete ARMA type models of complex scatterers may be applicable to estimating

their electromagnetic signature. In this thesis a simple ARMA model for the case of

the one-dimensional wave equation was investigated in order to examine this new

approach. Complex three-dimensional scattering structures can be treated using a

space-time finite-difference approach which is an extension to that investigated

herein. The ARMA model was constructed for the late-time response when the

scatterer acts as a recursive LTI system. The process of constructing such a model

included two main steps. First the scatterer should be presented in a discrete form.

In this work the finite- difference approach was presented as well as the time-domain

integral equation. The finite-difference approach is found to be convenient for the

construction of the required model. The advantage of this method is in the locally-

connected discrete form which can be effectively used in the next step. In the second

step, an algorithm is constructed to explicitly present the natural modes. In this

work, the algorithm is based upon the star operator obtained from the finite

difference approach. It was shown that the star operator was used recursively to

yield the ARMA model, with constant coefficients.
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Results of this work have shown again, in the case of acoustic scattering, that

natural resonance modes of a scatterer are spatial- and aspect-independent. The

scatterer acts as a complete recursive system only in the late-time. Since the early-

time is important because of practical considerations of signal to noise ratio, further

work is required to extend the model to and to examine its complexity in the early-

time. The computer program entitled TH7.FOR can be modified to help this

investigation.

The electromagnetic thin-wire scattering case was formulated via the vector

potential. However, the potential on the ends of the wire is unknown. Assuming

homogeneous boundary conditions reduces the problem to that of a vibrating finite

string with zero displacement at the ends. Extension to the electromagnetic case may

be made by attempting to discretize the current on the wire using the EFIE. In the

case of currents, the boundary conditions are zero.

A better approach is found by employing the finite-difference approach. In this

method the spatial point current is given in terms of its "nearest-neighbor" currents

yielding the applicable star operator. The ARMA model is constructed using the star

operator.
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APPENDIX A. SPACE-TIME WAVE EQUATION PROGRAM

The program entitled TH7.FOR numerically solves the displacement of a finite

string. The equation for the position U(xt) obeys the wave equation including a term

of loss

2U(x,t) 1 U2(x,) RaU(x,t) =/(x,0.
ax 2  c 2  &2  at

The program uses the finite-difference method, with central difference, to solve

the partial differential equation (PDE). The string with length L meters is subdivided

into N segments. The boundar' conditions U(x=O,t) and U(x=L,t) are set to zero.

The excitation is a Gaussian pulse with the form

al'( -xta-xn)
2

f(x,t) = GA -exp

The pulse width is set between "10%" points (TI in the program), where Theta is the

incident angle. The time-delay to peak pulse impact is T2. The times T1, T2 and

Theta can be defined in the program, along with the amplitude of the Gaussian pulse,

GA. Both space and time intervals are defined as S and T, respectively.

c VARIABLES DECLARATION
C

INTEGER N,NNEXTTh
REAL L,S,GA,C1,R,A,B,P,D,U1 ,U2,Tmax,T1 ,T2,A2,AlPL(403)
REAL PI,Tht,T3
CHARACTER*64 TITLE
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DIMENSION U(1 03,403), F(1 03,403)
C

write(*,*)
write(*,*)' PROGRAM TH7.FOR COHEN YUVAL MAY 1990'
write(*,*)
write(*,*)' SPACE-TIME WAVE EQUATION PROGRAM
write(*,*)
wrifte(*,*)' The program solves numerically the displacement'
write(*,*)' of a finite s~rng.The equation for U(x,t) is the'
write(*,*)' wave equation including a term of loss.
write(*,*)' The program uses the nFinite Difference Method"
write(*,*)' to solve the Partial Differential Equation (PDE)
write(*,*)' The string with length L meter is suDdivided into'
write(*,*)' N segments. The boundary conditions are
write(*,*)' U(x,t)=U(Lt)=0 and initial conditions U(x~o)=0
write(*,*)' and dU(x,o)/dt=0. The excitation is a gaussian
write(*,*)' pulse: G=Ga*EXP(-a*(t-Tmax-x*tan(Theta))**2)'
write(*,*)' The pulse width is set between 810%1 points. The'
write(*,*)' incident angle is Theta. The space step is S and'
write(*,*)' the time step is T.'
write(*,*)
write(*,*)' Ready to begin ?
write(*,*)
write(*,*)
pause

c
c INITIALIZATION
c

WRITE(*,*)
WRITE(*,*) 'Enter number of your MONITOR Type'
WRITE(*,*)' CGA ===> Enter 0'
WRITE(*,*)' EGA ===> Enter 1'
READ (*,*) NS
WRITE(*,*)
WRITE(*,*) 'Enter number for 'Form Feed' alter plot'
WRITE(*,*)' Enter 0 ===> NO FORMFEED (Laser)'
WRITE(*,*)' Enter 1 ===> FORMFEED (Impact)'
WRITE(-,*)
READ (-**) NED
ILINE=2
Pi=3.14159
CO=2.9979E+ 8
Tht=0.0
Th=0

WRITE(*,*)
WRITE(*,*) ' ENTER String length in Meters'
WRITE(*,*)
READ(*,*) L
WRITE(-,*)
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WRITE(",')
WRITE(*,-) ' ENTER : Gaussian pulse parameters'
WRITE(*,*) ' Enter: Amplitude GA'
WRITE(*,*)
READ(*,*) GA
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
T = 1 e-9
T2=0.6*T1

c
CONTINUE
NNEXT=O
WRITE(*,*) ' ENTER number of segments N'
WRITE(*,*) ' (Any integer between 2 to 100)'
READ(*,*) N
WRITE(*,*)
S=LIN

c a choose S/T=C
T=SICO
WRITE(*,*) ' How many TIME steps to compute?
WRITE(*,*) ' Enter Integer between 2 to 400'
WRITE(*,-)
READ(*,*) M
WRITE(*,*)
WRITE(*,*) ' Enter: coefficient R'
WRITE(*)' (R>O or R=0) in 1E-OUis
WRITE(*,*) ' The case R=0 is LOSSLESS case.'
WRITE(*,*)
READ(*,*) R
R=R*1 E-1 0
C1 =C0*R*S
A=2/(2+C1)
P=(ClI(2+Cl))-A
D=A*(S**2)*(-1.0)
IF(NNEXT.EQ.0) GO TO 8

c
5 CONTINUE

WRITE(*,*) ' Enter Pulse width in NSEC'
READ(*,*) Ti
Tl=T1*1E-9
WRITE(*,*) ' Enter Time delay in NSEC for Peak Pulse Impact'
READ(*,*) T2
T2=T2*1 E-9
NNEXT=0

8 CONTINUE
Tmax=Tl/2
a2=al(Tmax**2)
IF(r2.GT.Tmax) GO TO 9
WRITE(*,*) 'Time delay must be longer then half pulse width!'
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WRITE(r,*)~ TRY AGAIN "

GO TO 5
6 CONTINUE
7 CONTINUE

WRITE(*,*)' Enter Incident Angle in DEGREE( (0< =Theta=< 90)
READ(*,*) Th
IF (Th .GT. 90 .or. Th ILT. 0) then
WRITE(*,*) ' TRY AGAIN! O=< Theta <=90
GO TO 7
END IF
NNEXT=0

9 CONTINUE
c
c GENERATE BOUNDARY and INITAL CONDTONS

DO 300 j=1,M+2
DO 400 i=1,N+1

U(i,D =0.
400 CONTINUE
300 CONTINUE4

C
c GENERATE GAUSSIAN PULSE EXCITATION E=G*EXP(-a*(t-Tmax)**2)
c PULSE WIDTH at '10%' POINTS.
c

Tht=(Th/180.0)*Pi
T3=T*tan(tht)
DO 600 i=1,N
DO 500 j=1,M+2

500 CONTINUExp(10*2(-)TT-(-)T)*
600 CONTINUE

WRITE(*,*) Want to create file of.mat' with driver data?
WRITE(*,*) NO = = > Enter 0'
WRITE(*,*) YES = => Enter I'
READ(*,*) I
IF (I .EQ. 0) GO TO 23
OPEN(4,file= 'f.mat')
DO 100 i=1,M+2
DO 200 i=1,N
WRITE(4,*) f(ijD

200 CONTINUE
100 CONTINUE

CLOSE (4)
23 CONTINUE

c

c DISPLACEMENT COMPUTATION: MARCHING FORWARD IN TIME
c

DO 700 j=3,M+2
flji-2

DO 800 i=2,N
ii= i-I
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U2=P*U(ij.2) +D*F(ii,h)
U(i,D)=U1 +U2

800 CONTINUE
700 CONTINUE

C
c CREATE a DATA FILE for OUTPUT POST PROCESSING (matlab)

WRITE(*,*) 'Want to create file OU.mat' with displacement dataT
WRITE(-,-)' NO ==> Enter 0'
WRITE(*,*)' YES => Enter 1'
READ(*,*) I
IF (I .EQ. 0) GO TO 24
OPEN(3,file='U.mat')
DO 710 i=2,M+2
DO 720 i=1,N+1
WRITE(3,*) U(ij)

720 CONTINUE
710 CONTINUE

CLOSE (3)
C

c OUTPUT
C

24 CONTINUE
IF(NNEXT.EQ.0) GO TO 10

2 CONTINUE
WRITE(*,20) M

20 FORMAT(' Enter TIME in Time Step Units: [t= 1,2 ... M=',13,']')
READ(*,*) J
OPEN (2,FILE=X)
WRITE(2,1 1) JINITh

11 FORMAT('Displacement at TIME t=',13,' STEPS. 'Ji3,
$' SEG., Theta=',i3)

RE WIND (2)
READ(2,12) TITLE

12 FORMAT(A)
REWIND(2)
NPTS= N+ 1
Xmin=0
Xmax=N
j=j+2
DO 900 i=1 , N+1
PLQi)=U(ijD

900 CONTINUE
CALL PLTSUB (title, npts~xmin,xmax,xmin,xmax,p~ns~nfd,iline)
GOT0 10

C
3 CONTINUE

N1 =N-1
WRITE(*,21) Ni

21 FORMAT(' Enter SEGMENT NUMBER: [1,2 ...N-1 =',l3.'J')
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READ(*,*)
OPEN (2,FILE=X)
WRITE(2,13) i,NTh

13 FORMAT('DISPLACEMENT of SEGMENT #,13,'. ',l3,' SEG., Theta=',i3)
REWIND(2)
READ(2,14) TITLE
REWIND(2)

14 FORMAT(A64)
i=i+1
NPTS=M
Xmin=0
Xmax=M
DO 910 j=1,M+l
PL6)=U(iQj+1)

910 CONTINUE
CALL PLTSUB(tfie,npts,xmin,xmax,xmin,xmax,pi,ns,nfd,iline)
GOTO 10

C

4 CONTINUE
N1 =N-1
WRITE(-,22) Ni

22 FORMAT(' Enter SEGMENT NUMBER: [1,2,....N-1=',13,'j'
READ(-,-)
OPEN(2,FILE='X')
WRITE(2,1 5) iT1 1 ,T22,NTh

15 FORMAT('Driver on Seg.:',i3,',Tpw=',F6.3,' nsTd=',F6.3,
S' ns,N=,13,',Theta='ji3)

REWIND(2)
READ(2,16) TITLE
REWIND(2)

16 FORMAT(A64)
NPTS=M
Xmin=0
Xmax=NPTS
DO 920 j=1,NPTS
PL@j)=F(i~j

920 CONTINUE
CALL PLTSUB(ttle~npts,xmin.xmax~xmin,xmax,pl,ns,nfd,iline)

10 CONTINUE
WNRITE(*,*)
WRITE(*,*) ' SELECT Number for Results or Change data
WRITE(*,*)--9
WRITE(*,*) ' Change Data AGAIN??==>1
WRITE(*,*) ' Displacement on the wire at time t=.. ==>2'

WRITE(*,*) ' Displacement on Segment #.. ==>3'

WRITE(*,*) ' Pulse Excitation as Function of Time = >4'

WRITE(*,*) 'Change Pulse Excitation Timing 5== S
WRITE(**) ' Change Pulse Excitation Incident ANGLE = >6'

T11=Tl*1E+9
WRITE(*,*)
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WRITE(*,1I7) TIl1
17 FORMAT ('~ Currpnt ialues are: Pulse width=',f6.3,' ns.')

T22=T2*1 E+9
WRITE(*, 18) T22

18 FORMAT (' Time Delay for Peak Pulse lmpact=',F6.3,' ns.')
WRITE(-, 19) Th

19 FORMAT (' Incident Angle: Theta =',13,' Degree.')
WRITE(-,-)
WRITE(*,*)' Any Ot..2r Inte-,ger ==>END PROGRAM i!'
WPITE(*,*)
READ/-%*) NNEXT
lF(NNEXr.EQ-1) GO TO 1
IF(NNEXT.EQ.2) GO TO 2
IF(N!'EXT.EQ.3) GO TO 3
IF(NNEXT.EQ.4) GO TO 4
IF(NNEXT.EQ.5) GO T70 5
IF(NNEXT.EQ.6) GO TO 6
STOP
END

SUBROUTINE PLTSUB(TITLE,NPTS,XMIIl,XMAX,XS,XF,F,NS,NFrD,ILINE)
C
C MS-FORTRAN Subroutine using 'Gratmatic' Library Subroutines.
C Solid Line Using Portions of 'PLOT' Program.
C WNritten by M.A. Morgan with Latest Update to EGN/CGA June 1989.
C
C Default Printer is 'IBM Graphics' (e.g. Epson, Okidata, IBM)
C With Plot Rotated 90 degrees From the Vertical. 'GrafPlus.Com'
0 May be Run to Rotate Plot Upright on Paper and to Use a Variety
C of Impact Printers. "GrafLaser.Com' May be Run to Use a Laser
C Printer. See GrafPlus/Laser Manual From Jewell Technology.
C
C INPU , DATA FORMAT
C
C TITLE - 64 Character Header
C NPTS - # Data Points 16
C XMiN -Min X-Axis value
C XMAX - Max X-Axis value
C XS - Studh;,g X value for F(l)
o XF - Finisi iing X value for F(N)
C F(N) - Input Data Array

C'NS - Monitor: 101= C,6A, 81= EGA
0 NFD - 'V -- Form Feed After Plot Hardcopy (Impact)
C Any Othmr Integer -- > No Form Feed (Laser")
C ILINE - o1l -- > . + . Symbol Dot Plot
C Any Othier Integer --> Solid Line Plot
C
C NOTE: The X-Axis Range Can Be Made Larger Than
C The Domain of the Plotted Function, F(x).

73



o Otherwise, Make XS=XMIN and XF=XMAX.
C

CHARACTER*1 DUM,BELL,FEED
CHARACTER*64 TITLE, FNAM E, HCOPY
REAL X(512),F(512)
INTEGER*2 NIJ ROW,JCOL, ISYM, [TYPE, NSCRN
INTEGER*2 CYAN,WHITE,YELLOW,RED,BLACKBLE.NTWO
INTEGER*2 JROW1 ,JROW2,JCOL1 IJCOL2
BELL=CHAR(7)
FEED=CHAR(1 2)
WRITE(*,*) BELL
WHITE=7
CYAN=1 1
YELLOW=14
RED=12
BLACK=0
BLUE= 1
NTWO=2
NSCRN = 6 + 10*NS

N =NPTS
DX= (XF-XS)/(N-1 .0)
FMIN=0.0
FMAX=0.0
DO 22 K=1,N
X(K)=XS+(K-1.O)*DX
IF(F(K).LT.FMIN) FMIN=F(K)

22 IF(F(K).GT.FMAX) FMAX=F(K)
IF(FMIN.GT.O.O) FMIN=O.0
IF(FMAX.LT.0) FMAX=O.0

C Computing Scale Factors for Vertical Axis
ABSMIN=ABS(FMIN)
ABSMAX=ABS(FMAX)
YBIG=AMAX1 (ABSMIN,ABSMAX)
NSCL=INT(LOG1 0(YBIG))
IF (YBIG.L.T.i.0) NSCL=NSCL-1
YSCL=1 0**NSCL
FMIN=FMINIYSCL
FMAX=FMAX/YSCL
ABSMIN=ABSMINIYSCL
ABSMAX=ABSMAX1YSCL
DO 33 K=1,N

33 F(K=F(K)IYSCL
C Adaptive Scaling Algorithm 5/89
C Setting Polarity of YMIN and YMAX

YMIN=0.0
YBIG =0.0

IF(FMIN.EQ.0.0) GO TO 37
DY =0.5

35 CONTINUE
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IF(VMIN.GE.4.0) DY=1 .0
YMIN=YMIN+ DY
IF(ABSMIN.GT.YMIN) GO TO 35
YBIG =YM IN
YMIN=YMIN*FMIN/ABSMIN

37 YMAX=0.0
IF(FMAX.EQ.0.0) GO TO 41
DY=0.5

39 CONTINUE
IF(YMAX.GE.4.0) DY= 1.0
YMAX=YMAX+ DY
IF(ABGMAX.GT.YMAX) GO TO 39
IF(YMAX.GT.YMIN) YBIG=YMAX
YMAXY*MAFMXABSMA(

41 CONTINUE
C Calling GRAFMATIC Routines and Plotting F
C Solid Line Graph Default

ITYPE=1
ISYM=-2
NDOTS= 0

C + ++ Line Graph If ILINE=1
IF(ILINE.NE.1) GO TO 45
ISYM =-1
ITYPE=0

45 CONTINUE
JROW1 = 35+25*NS
JROW2= 170+120*NS
JCOL1 = 110-1 0*NS
JCOL2= 540
CALL QSMODE(NSC.RN)
CALL QPTXT(64,TITLE,YELLOW, 16,24)
CALL QPLOT(JCOL1 ,JCOL2,JROW1 ,JROW2,XMIN,XMAX,YMIN,YMAX,XMIN,

10.,0,1.,1.5)
CALL QSETUP(NDOTS,CYAN,ISYM,CYAN)
XMAJOR= (XMAX-XMIN)/5.0
CALL QXAXIS(XMIN,XMAX,XMAJOR,1 11,2)
IF(YBIG.LE.4.0) YMAJOR=0.5
IF(YBIG.GE.5.0) YMAJOR= 1.0
IF(YBIG.EQ.8.0) YMAJOP1=2.0
IF(YBIG.EQ.9.0) YMAJOR=3.0
IF(YBIG.EQ.10.) YMAJOR=2.0
CALL QYAXIS(YMIN,YMAX,YMAJOR,1 ,1 ,1)
JROW=32+21 *NS+ (ABS(YMIN)/(ABS(YMAX) +ABS(YMIN)))*(1 35+95*NS)
JCOL=80.8*NS
CALL QGTXT(3,'0.0',WHITE,JCOL,JROW,0)
CALL QPTXT(1 ,'S',YELLOW,5,1 8)
CALL QPTXT(1 ,'c,YELLOW,, 7)
CALL QPTXT(1 ,'a',YELLO W,5,1 6)
CALL QPTXT(I ,'I',YELLOW,5,1 5)
CALL QPTX(1 ,'e',YELLOW,5,14)
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CALL QPTXT(1 ,'X',YELLOW,5,1 2)
CALL QPTXT(2,'1 0',YELLOWA41 0)
CALL QPTXT(1 ,'*',YELLOW,5,9)
CALL QPTXT(1 , *,YELLOW,58)
CALL QCMOV(0,8)
WRITE(*,15O) NSCL
CALL QTABL(FTYPEN,XIF)

C Hardcopy Query - Updated 5/11/89
HCOPY='Hardcopy -> Enter P or p'
CALL QPTXT(3O,HCOPYRED,25,1)
CALL QCMOV(55,i)
READ(*,100) DUM
HCOPY='
CALL QPTXT(40,HCOPY,BLACK25,1)
IF(DUM.NE.'P' .AND. DUM.NE.'p') GO TO 48
CALL OPSORN
IF(NFD.EQ.1) WRITE(1,160) FEED

48 CONTINUE
C Exit to Blue Background on Screen - To Change This,
C Replace 'BLUE" in Calls to QPREG and QOVSCN to That Desired.

CALL QSMODE(N1YVO)
CALL QPREG(O,BLUE)
CALL QOVSCN(BLUE)

100 FORMAT(A)
120 FORMAT(15)
130 FORMAT(E12.3)
150 FOR MAT(4X,13,\)
160 FORMAT('',A,\)

RETURN
END
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APPENTIX B. ARMA MODEL ALGORIThM

This Appendix presents the development of the ARMA model using the

equation of evolution for the lossless case example given in Chapter IV.

Start with the equation of evolution of the following form for M=3

U(k) =A.U(k-1) - 5(k-2), (1)

with the symmetric matrix

10

Using Eq. (1) to express U(k-1), substituting into Eq. (1) yields the following

1(k) = 5 U(k-2) +A2.U(k-2) -A_.(k-3). (2)

Using Eq. (1) to express U(k-2) and substituting into Eq. (2) yields the following

U(k) = - U(k-2) + A'[A-U[(k-3) - U(k-4)] -AU(k-3). (3)

Rearranging Eq. (3) and using the fact that for M=3 A 3 =2A, the following

expression is obtained:

U(k) = - U(k-2) + .(k-3) 4 2U(k_4). (4)
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Using Eq. (1) to write U(k-3), substituting in Eq. (4), and adding and subtracting

U(k-4) yields

U(k)= - U(k-2) -AU(k-5) + U(k-4) - U(k-4). (5)

Using Eq. (1) to write U(k-4) and substituting in Eq. (5) yields

U(k) = - U(k-2) - U(k-4) - U(k-6). (6)

Equation (6) has the form of the ARMA model for M=3 described in Chapter IV

Section G.

799



APPENDIX C. PRONY'S METHOD PROGRAM

The computer program entitled TEST.M implements the Prony's method to

estimate ARMA model coefficients using time-domain data. The program, which is

written using MATLAB codes, finds the coefficients by implementing the procedure

described in Chapter IV, Section I. The matrix with the time-domain data should be

defined in a MATLAB format, and stored in a file called X.MAT. The data may be

generated by TH7.FOR, and translated into MATLAB format using "translate" in

MATLAB. The output of the program plots the results of the coefficients for each

segment data. The coefficients are stored in a matrix called c where each column

contains the coefficients for each segment data. Plots of results may be obtained by

using the information in matr;x c.

% TEST.M program by Yuval Cohen June 1990
% The program implements the Prony's method on time-domain data
% estimating ARMA coefficients of the late-time solution of the
% space-time wave equation.

load x
input('Enter number of segments of the string N')
ns=ans;
input('Enter number of coefficients M=2(N-1)')
m=ans;
input('Enter the time-step t')
t=ans;
c=[];
for I=1:ns n=0;

u=[];

for i=1:m
for j= 1:m
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y(i,j) =x(t-jn,I);
end
n=n+1;
end
for i=1:m u(i)=x(t-i+1,I);
end
U = U;
a=y\u;
c(:,I) =a;
plot(a)
end
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